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NOTE 

Random Access to a Random Number Sequence 

1. INTRODUCTION 

We offer an extension of the method in a recent note by 
Koniges and Leith [ 1 ] for a direct jump to any kth element 
of a linear congruential muliplier pseudo-random number 
sequence [Z] of form 

Xk+,=AXk+cmodm, k 2 0, (1) 

where 1 (the multiplier), c (the additive constant), x0 (the 
seed), and m (the modulus) are given integers. Often, 
m = 2”, where n is the number of bits in the mantissa of a 
machine word. In this note all arithmetic is assumed exact, 
mod m. The solution to Eq. (1 ), 

;Ik- 1 
Xk=AkXo+c- I-1’ 

has two addends. Once contains the seed x0, the other has 
the additive constant c. We express the solution as 

Xk=Xk+zk, (3) 

where 

xk = Ak&,, (4) 

c,=c(l+i+A*+P+ ..’ +P’)=cm. Ak-- (5) 

The method (independently devised and used by us) 
involves the precalculation and storage of two arrays: one 
contains powers of the multiplier 1; the other has partial 
sums from Eq. (5). The binary digits of k specify how 
elements from these arrays are selected and combined to 
evaluate Eqs. (4) and (5). In [l] the authors note that for 
the common modulus, m = 24x, and k random, one needs on 
average 24 multiplications to evaluate Eq. (4). For nonzero 
c, another 24 multiplications and 24 additions are needed 
for Eq. (5), although here the details were a bit sketchy. This 
seems a modest effort (certainly if compared to k passes 
through Eq. (1 )!), but if large numbers of calculations are 
required, such as in [3], even more efficient methods may 
be desired. 

We present a more efficient approach, a model which 
includes the binary method discussed above as the simplest 
case. We let k be represented in any convenient number 
base; the larger the base, the fewer the digits of k, and the 
less the ensuing arithmetic. For a small one-time cost of pre- 
calculating and storing somewhat larger arrays of needed 
data, the number of multiplications and additions needed to 
evaluate Eqs. (4) and (5) can be reduced several fold. For 
example, in base 8 the number of multiplications needed 
drops from 24 to 14. With base 256 the number of multi- 
plications drops to 6. 

2. NOTATION 

In the following we assume all parameters and variables 
are non-negative integers less than m, that all calculations 
are mod m, and that routines for exact integer multiplica- 
tions and additions mod m are available. Let b equal the 
number base in which k is expressed, and J be equal to the 
largest j such that b to thejth power is less than m. Then, 

k=d,bJ+d,_,bJ-‘+ . . . +d2b2+d,b1+dobo 

= Cd,, dJ-, , . . . . 4, d, > do), (6) 

where d, is the value of the jth digit of k in base b. To clarify 
our argument, we will occasionally illustrate the process 
using the example, 

m = 24x, b= 8, J= 15 

k = 1537 (base 10) = 3045 (base 8) = 3045b 

=OX~*~+OX~~~+ ... +3~8~+0~8*+4~8~+5~8~ 

do=5, d,=4, d,=O, d,=3, d,=O, ja4. 

(7) 

3. THE EXTENDED MODEL 

We wish to evaluate the pseudo-random number 
specified by Eqs. (4) and (5) for an arbitrary index k. We 
will show that the digits of k, expressed in base b, prescribe 
a method for evaluating Eqs. (4) and (5) with arithmetic 
efficiency proportional to log, b/log, m. For each nonzero 
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digit, Eqs. (4) and (5) require two multiplications and one 
add, of elements from two matrices, P and S, containing 
precalculated values of powers of the multiplier and sums, 
respectively. The calculation of P and S is a one-time 
overhead, since P and S for a given generator can be 
permanently stored in a table. 

4. THE P MATRIX 

The elements of P are specified powers of the multiplier A, 

pi, j = lib’, i = 0, . . . . b - 1; j = 0, . . . . J. (8) 

By inspection, P,,, = 1 for allj, and P,,. = A. The remaining 
elements follow from recursion relations. The columns are 
calculated in order, starting with j = 0: 

pi+l,j=pl,jxpi,j? i= 1, b-2. 

To advance j, use 

pI,jiI=pl,~xpb-l,j~ j= 1, J- 1. 

5. THE S MATRIX 

If c is nonzero, a matrix S containing elements that are 
the partial sums in Eq. (5) must also be precomputed. Let 

s, ,=A”‘- 1 
‘.J 1-l ’ 

i=O, b- 1; j=O, J 

= 1 +J+A*+ . . +A(ib’)-l. (9) 

By inspection, S,, j = 0 for allj, and S,,, = 1. The remaining 
elements follow from recursion relations. The columns are 
calculated in order, starting withj = 0, 

si+l,j= si,.j + pi,., x sl, j5 i= 1, b-2. 

To advance j, use 

S 1,~+I=~b-I.j+~b-l,j~~1,j~ j= 1, J- 1. 

6. EVALUATING X, 

The multiplier term X, given by Eq. (4) is evaluated by 
using the expression for k in base b given by Eq. (6) as the 
exponent to express Ik as the product of elements of the 
matrix P (one factor from each column j, with row index 
i = dj). One obtains 

For our example, k = 30456, m = 248 the result (all integers 
base 8) is 

x 3045 = p,,, x PO.2 x p4.1x p5.0 x x0 

= A3rn x %40 x A5 x x0 

zr A3045 x x0. 

Note that PO, j = 1, so the factor P,,z and the (unwritten) 
factors PO, j for j = 4, . . . . 15 can be skipped. 

7. EVALUATING Zk 

Use nested multiplication to express Eq. (5) in terms of 
the partial sums and the powers of the multiplier previously 
calculated and stored in S, j and Pi, ,, respectively. The 
result is 

ck = c[sd,,, + pd,,J IIs,-,,,- I + PC/&,,& IC ... 

c~,,,,+~~,,lc~do,ol~~~llll. (11) 

From each matrix there is one entry from each column j 
with row index i= d,, except P,,, does not appear. The 
result for the example k = 30456, m = 248, is 

23045 - 1 
.z 3045=c ~ [ 1 A-1 

=c[l +I+ . . . +ji3o45] 

=c[l+A+ ‘.. +~2’7’+ji3~[l +A+ ... +A”“]] 

=c[l +A+ .‘. +A*“‘+1.3~[o+ 1 

x Cl+%+ ‘.. +A3’+A40[l +A+ ... +A”]]]] 

=c~s,,3+p3.3~s0,2+p0,2[Is4,L +p4,1[s5,0?111. 

(12) 

Note that So,, = OandP,,,=l,sothej=2termscanbe 
skipped. Similarly, the terms for j= 4, 15 (not explicitly 
shown) do not contribute. 

8. SUMMARY 

We have expanded the method in a recent note by 
Koniges and Leith [l] for a direct jump to any desired kth 
element Xk of the standard linear congruential random 
number generator specified by Eqs. (1) and (2). The digits 
of k (base b) in Eq. (6) are indices for selecting elements 
from two precalculated arrays, P and S, Eqs. (6) and (7). 
These elements are combined in Eqs. (10) and (11) to give 
the addends of xk = A’, + Ck. 

The choice of the base b determines the number of digits 
in k (base 6). For each nonzero digit, the evaluation of Eqs. 
(10) and (11) require two multiplications (mod m), and one 
add. The larger the choice for b, the fewer the digits in k 
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(base b), and the less the arithmetic needed to evaluate Eqs. 
(10) and (11). For modulus m = 248, values of b = 2, 8, and 
256 require at most 48, 16, and 6 multiplications, respec- 
tively, to evaluate Eq. (10). The expected number of multi- 
plications is somewhat less. As noted above, only the non- 
zero digits of k lead to modular arithmetic calculations 
(zero digits imply the addition of zero and/or multiplication 
by unity). For a random k, base b, the probability that a 
random bit is nonzero is (b - 1)/b. Thus we find that the 
expected number of multiplications to evaluate Eq. (10) for 
b = 2, 8, or 256 drops to 24, 14, or 5.98, respectively. 

The drawback for very large base b is the storage needed 
for the precalculated P and S arrays, Eqs. (8) and (9). Each 
has b( J + 1) elements, where J + 1 is the maximum number 
of digits in k (base 6). For m = 248, and b = 2, 8, 256, 
there are respectively 2 x 48 = 96, 8 x 15 = 120, and 
256 x 6 = 1536 elements in P and in S. If b is further 
increased, then each array size b(J + 1) grows rapidly. On 
the other hand, the J+ 1 number of multiplications 
(mod m) needed to evaluate Eq. (10) decreases slowly. We 
suggest that for a 48-bit machine word length b= 256 is 

a good compromise between table size and achievable 
speedup. For a standard generator with zero additive term 
using base 256 reduces the overall operations count from 48 
if tests, 48 register shifts, 24 multiplies, and 72 logical ands 
to 6 register shifts, 5.98 multiplies, and 11.98 logical ands, 
yielding more than a fourfold increase in speed over the base 
2 case. 
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