
JOURNAL OF COMPUTATIONAL PHYSICS 9, 176178 (1992)

NOTE

Random Access to a Random Number Sequence

1. INTRODUCTION

We offer an extension of the method in a recent note by
Koniges and Leith [1] for a direct jump to any kth element
of a linear congruential muliplier pseudo-random number
sequence [Z] of form

Xk+,=AXk+cmodm, k 2 0, (1)

where 1 (the multiplier), c (the additive constant), x0 (the
seed), and m (the modulus) are given integers. Often,
m = 2”, where n is the number of bits in the mantissa of a
machine word. In this note all arithmetic is assumed exact,
mod m. The solution to Eq. (1),

;Ik- 1
Xk=AkXo+c- I-1’

has two addends. Once contains the seed x0, the other has
the additive constant c. We express the solution as

Xk=Xk+zk, (3)

where

xk = Ak&,, (4)

c,=c(l+i+A*+P+ ..’ +P’)=cm. Ak-- (5)

The method (independently devised and used by us)
involves the precalculation and storage of two arrays: one
contains powers of the multiplier 1; the other has partial
sums from Eq. (5). The binary digits of k specify how
elements from these arrays are selected and combined to
evaluate Eqs. (4) and (5). In [l] the authors note that for
the common modulus, m = 24x, and k random, one needs on
average 24 multiplications to evaluate Eq. (4). For nonzero
c, another 24 multiplications and 24 additions are needed
for Eq. (5), although here the details were a bit sketchy. This
seems a modest effort (certainly if compared to k passes
through Eq. (1)!), but if large numbers of calculations are
required, such as in [3], even more efficient methods may
be desired.

We present a more efficient approach, a model which
includes the binary method discussed above as the simplest
case. We let k be represented in any convenient number
base; the larger the base, the fewer the digits of k, and the
less the ensuing arithmetic. For a small one-time cost of pre-
calculating and storing somewhat larger arrays of needed
data, the number of multiplications and additions needed to
evaluate Eqs. (4) and (5) can be reduced several fold. For
example, in base 8 the number of multiplications needed
drops from 24 to 14. With base 256 the number of multi-
plications drops to 6.

2. NOTATION

In the following we assume all parameters and variables
are non-negative integers less than m, that all calculations
are mod m, and that routines for exact integer multiplica-
tions and additions mod m are available. Let b equal the
number base in which k is expressed, and J be equal to the
largest j such that b to thejth power is less than m. Then,

k=d,bJ+d,_,bJ-‘+ . . . +d2b2+d,b1+dobo

= Cd,, dJ-, , 4, d, > do), (6)

where d, is the value of the jth digit of k in base b. To clarify
our argument, we will occasionally illustrate the process
using the example,

m = 24x, b= 8, J= 15

k = 1537 (base 10) = 3045 (base 8) = 3045b

=OX~*~+OX~~~+ ... +3~8~+0~8*+4~8~+5~8~

do=5, d,=4, d,=O, d,=3, d,=O, ja4.

(7)

3. THE EXTENDED MODEL

We wish to evaluate the pseudo-random number
specified by Eqs. (4) and (5) for an arbitrary index k. We
will show that the digits of k, expressed in base b, prescribe
a method for evaluating Eqs. (4) and (5) with arithmetic
efficiency proportional to log, b/log, m. For each nonzero

0021~9991/92 $3.00

Copyright 0 1992 by Academic Press, Inc.
All rights of reproduction in any form reserved.

176

RANDOM ACCESS TO A RANDOM NUMBER SEQUENCE 177

digit, Eqs. (4) and (5) require two multiplications and one
add, of elements from two matrices, P and S, containing
precalculated values of powers of the multiplier and sums,
respectively. The calculation of P and S is a one-time
overhead, since P and S for a given generator can be
permanently stored in a table.

4. THE P MATRIX

The elements of P are specified powers of the multiplier A,

pi, j = lib’, i = 0, b - 1; j = 0, J. (8)

By inspection, P,,, = 1 for allj, and P,,. = A. The remaining
elements follow from recursion relations. The columns are
calculated in order, starting with j = 0:

pi+l,j=pl,jxpi,j? i= 1, b-2.

To advance j, use

pI,jiI=pl,~xpb-l,j~ j= 1, J- 1.

5. THE S MATRIX

If c is nonzero, a matrix S containing elements that are
the partial sums in Eq. (5) must also be precomputed. Let

s, ,=A”‘- 1
‘.J 1-l ’

i=O, b- 1; j=O, J

= 1 +J+A*+ . . +A(ib’)-l. (9)

By inspection, S,, j = 0 for allj, and S,,, = 1. The remaining
elements follow from recursion relations. The columns are
calculated in order, starting withj = 0,

si+l,j= si,.j + pi,., x sl, j5 i= 1, b-2.

To advance j, use

S 1,~+I=~b-I.j+~b-l,j~~1,j~ j= 1, J- 1.

6. EVALUATING X,

The multiplier term X, given by Eq. (4) is evaluated by
using the expression for k in base b given by Eq. (6) as the
exponent to express Ik as the product of elements of the
matrix P (one factor from each column j, with row index
i = dj). One obtains

For our example, k = 30456, m = 248 the result (all integers
base 8) is

x 3045 = p,,, x PO.2 x p4.1x p5.0 x x0

= A3rn x %40 x A5 x x0

zr A3045 x x0.

Note that PO, j = 1, so the factor P,,z and the (unwritten)
factors PO, j for j = 4, 15 can be skipped.

7. EVALUATING Zk

Use nested multiplication to express Eq. (5) in terms of
the partial sums and the powers of the multiplier previously
calculated and stored in S, j and Pi, ,, respectively. The
result is

ck = c[sd,,, + pd,,J IIs,-,,,- I + PC/&,,& IC ...

c~,,,,+~~,,lc~do,ol~~~llll. (11)

From each matrix there is one entry from each column j
with row index i= d,, except P,,, does not appear. The
result for the example k = 30456, m = 248, is

23045 - 1
.z 3045=c ~ [1 A-1

=c[l +I+ . . . +ji3o45]

=c[l+A+ ‘.. +~2’7’+ji3~[l +A+ ... +A”“]]

=c[l +A+ .‘. +A*“‘+1.3~[o+ 1

x Cl+%+ ‘.. +A3’+A40[l +A+ ... +A”]]]]

=c~s,,3+p3.3~s0,2+p0,2[Is4,L +p4,1[s5,0?111.

(12)

Note that So,, = OandP,,,=l,sothej=2termscanbe
skipped. Similarly, the terms for j= 4, 15 (not explicitly
shown) do not contribute.

8. SUMMARY

We have expanded the method in a recent note by
Koniges and Leith [l] for a direct jump to any desired kth
element Xk of the standard linear congruential random
number generator specified by Eqs. (1) and (2). The digits
of k (base b) in Eq. (6) are indices for selecting elements
from two precalculated arrays, P and S, Eqs. (6) and (7).
These elements are combined in Eqs. (10) and (11) to give
the addends of xk = A’, + Ck.

The choice of the base b determines the number of digits
in k (base 6). For each nonzero digit, the evaluation of Eqs.
(10) and (11) require two multiplications (mod m), and one
add. The larger the choice for b, the fewer the digits in k

178 CANFIELD AND VIECELLI

(base b), and the less the arithmetic needed to evaluate Eqs.
(10) and (11). For modulus m = 248, values of b = 2, 8, and
256 require at most 48, 16, and 6 multiplications, respec-
tively, to evaluate Eq. (10). The expected number of multi-
plications is somewhat less. As noted above, only the non-
zero digits of k lead to modular arithmetic calculations
(zero digits imply the addition of zero and/or multiplication
by unity). For a random k, base b, the probability that a
random bit is nonzero is (b - 1)/b. Thus we find that the
expected number of multiplications to evaluate Eq. (10) for
b = 2, 8, or 256 drops to 24, 14, or 5.98, respectively.

The drawback for very large base b is the storage needed
for the precalculated P and S arrays, Eqs. (8) and (9). Each
has b(J + 1) elements, where J + 1 is the maximum number
of digits in k (base 6). For m = 248, and b = 2, 8, 256,
there are respectively 2 x 48 = 96, 8 x 15 = 120, and
256 x 6 = 1536 elements in P and in S. If b is further
increased, then each array size b(J + 1) grows rapidly. On
the other hand, the J+ 1 number of multiplications
(mod m) needed to evaluate Eq. (10) decreases slowly. We
suggest that for a 48-bit machine word length b= 256 is

a good compromise between table size and achievable
speedup. For a standard generator with zero additive term
using base 256 reduces the overall operations count from 48
if tests, 48 register shifts, 24 multiplies, and 72 logical ands
to 6 register shifts, 5.98 multiplies, and 11.98 logical ands,
yielding more than a fourfold increase in speed over the base
2 case.

REFERENCES

1. A. E. Koniges and C. E. Leith, J. Comput. Phys. 81, 230 (1989).
2. D. E. Knuth, The Art of Computer Programming, Vol. 2 (Addison-

Wesley, Reading, MA, 1969).
3. J. A. Viecelli and E. H. Canfield, Jr., J. Compuf. Phys. 95, 29 (1990).

Received February 23, 1990; revised January 29, 1991

E. H. CANFIELD, JR.

J. A. VIECELLI

Lawrence Livermore Naiional Laboratory
Livermore, California 94550

